

<u>SY54A 程控精密直流电阻箱</u> ^{操作手册}

鹤壁盛源科技有限公司

目 录

1	产品简	介1
	1.1	概述1
	1.2	特点······1
	1.3	应用2
2	快速入	门3
	2.1	一般性检查······3
	2.2	外观3
	2.3	前面板各部件说明 ·······4
	2.4	后面板各部件说明 ······8
	2.5	连接电源······9
	2.6	开机检查10
	2.7	关机······11
	2.8	更换保险丝······11
3	基本	操作12
	3.1	工作模式的切换
	3.2	输出状态的切换
	3.3	面板锁定与解除13
	3.4	按键音的打开与关闭
	3.5	电阻模式下的基本操作 ······16
	3.6	温度模拟模式下的基本操作
4	菜单操	2作32
	4.1	RS232 参数设置34
	4.2	USB 参数设置
	4.3	同步设置43
	4.4	调节设置48
	4.5	位置校正58
	4.6	残余电阻测定
	4.7	变差测定64
	4.8	误差标定67
	4.9	设备信息70

5	通讯接口和通讯规约······	72
	5.1 通讯接口	72
	5.2 SCPI 通讯规约简介····································	73
	5.3 输出子系统	76
	5.4 配置子系统	79
	5.5 位置校正子系统	83
	5.6 残余电阻子系统	83
	5.7 误差标定子系统······	84
	5.8 变差子系统	86
	5.9 仪器信息查询······	87
	5.10 重置仪器	87
	5.11 返回错误信息	37
6	技术指标•••••••	39
	6.1 外形尺寸	89
	6.2 技术参数	90
7	成套及保修	92
	7.1 成套	92
	7.2 包装	92
	7.3 运输	92
	7.4 储存	92
	7.5 保修	93

1 产品简介

1.1 概述

SY54A 程控精密直流电阻箱是一款采用微处理器的数字化、可程控的宽范围高精 度直流电阻输出仪器,拥有自主知识产权(发明专利号: ZL 202011219331.6)。该仪 器采用时间常数小、稳定性高的精密电阻器和独特的补偿技术,使输出电阻范围达到了 0.01~100000.00Ω,最小调节分度为 0.01Ω,具有频率特性好、稳定性高、性能可靠等 独特优点及较高的自动化程度,克服了手动电阻箱调节操作繁琐的弊端,而且输出的电 阻阻值可按步进值连续调节和程序调整。

SY54A 程控精密直流电阻箱具有热电阻温度传感器模拟功能,实现 RTD、NTC 等 多种标准温度传感器的"T-R"特性的模拟,可广泛应用于各种温度检测、采集和显示 装置的调试和过程校准。

SY54A 程控精密直流电阻箱具有多种类型控制和通讯接口,灵活实现电阻或模拟 温度的程序变化,使它能够用于电子产品自动化生产线中基于标准电阻器的自动测试, 以及电子产品研发过程的动态电路参数调试等。

1.2 特点

- Ⅰ 采用军工级低温飘精密电阻器,优异的电阻稳定性
- Ⅰ 采用超低热电势精密仪器旋转开关切换电阻网络,寿命长,保证长期稳定性
- I 电阻调节范围达 0.01Ω~100000.00Ω
- Ⅰ 最高精度可达±0.01%
- I 20 组常用电阻值和 20 组温度值记忆单元,可快捷存储和调出
- I 5.5 英寸彩色 LCD 显示屏,可同时显示参数和状态
- Ⅰ 按键快速设置,可直接输入电阻值或温度值
- Ⅰ 可旋钮调节,阻值或模拟温度值可按步进值连续变化
- Ⅰ 可仿真多种规格的 RTD 和 NTC 类型热敏电阻温度特性
- Ⅰ 具有 RS232 和 USB 接口,支持 SCPI 通讯协议
- Ⅰ 具有外部调节、控制和同步接口
- Ⅰ 手提式工业机箱设计,便捷的操作
- Ⅰ 价格低廉, 仅为同规格产品的 1/3~1/2

1.3 应用

- Ⅰ 工厂、学校、热工、科研等多个领域的电测量和实验
- Ⅰ 电子产品研发过程的静态、动态电路参数调试
- Ⅰ 模拟多种类型的热电阻温度传感器,对热电阻温度采集、变换装置的校准和调试
- Ⅰ 电子产品自动化生产线中基于标准电阻器的自动检测

2 快速入门

2.1 一般性检查

2.1.1 检查运输包装

如运输包装已损坏,请保留被损坏的包装或防震材料,直到货物经过完全检查且仪 器通过电性和机械测试。因运输造成仪器损坏,由发货方和承运方联系赔偿事宜。华盛 公司恕不进行免费维修或更换。

2.1.2 检查整机

若存在机械损坏或缺失,或者仪器未通过电性和机械测试,请联系您的盛源科技经 销商。

2.1.3 检查随机附件

请根据装箱单检查随机附件,如有损坏或缺失,请联系您的盛源科技经销商。

2.2 外观

图 2-1 前面

图 2-2 后面

2.3 前面板各部件说明

图 2-3

序号	各部分名称	各部分说明
1	Output	输出端子
I	Sense	传感端子
2	显示屏	显示信息
3	提手	搬运时提起
4	数字按键	用于输入数字
5	控制按键	保留
6	调节旋钮	调节输入
7	Gound	接地端子
8	多功能按键	功能快捷键
9	菜单返回按键	退出菜单,返回上一层
10	模式按键	切换电阻模式或温度模拟模式
11	增量减量按键	增加数值或减小数值
12	输出状态切换	切换最小值、给定值、最大值
13	电源开关	控制电源的开关
14	位选择	左移或右移选择

表 2-1 前面板各部件名称及说明

2.3.1 面板开关、按键和旋钮

按键	功能说明
Power	电源开关,为自锁式开关。压下时为开机,弹出时为关 机。
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	数字输入。
R-set	电阻模式。
T-set	温度模拟模式。

按键	功能说明
Enter	输入确认。
Back	数字输入删除。
Min	最小输出。
Max	最大输出。
Oper	给定输出。
Esc	取消/退出。
	上选、增加。
	下选、减小。
\leq	左移。
\bigcap	右移。
	调节旋钮。
Menu Exit	返回上一层菜单。
F1 F2 F3 F4 F5 F6	多功能按键,对应屏幕提示功能。

2.3.2 面板输出端子

本仪器前面板共有5个接线端子,其功能说明见表2-2。

端子名称	功能说明
Output 端子	含有 HI 和 LO 两个端子,用于电阻输出
Sense 端子	含有 HI 和 LO 两个端子,用于四线制电阻输出时的测量和补偿
Ground 端子	该端子与机壳、地线(电源线接地端)相连

表2-2 输出端子说明

接线时,可采用两线制接法和四线制接法。

高阻输出时可采用两线制引出。两线制引出时,导线应接在 Output 端子的 HI 和 LO 两个接线端子上。

在输出较小电阻阻值,或者模拟 PT 系列和 Cu 系列温度传感器时,输出引线的电 阻将会带来误差。如果对小电阻输出的电阻误差有较高要求,应采用四线制引出。 四线制引出时,Output端子的HI和LO两个接线端子引出主电阻输出,而Sense端子的 HI和LO两个接线端子则接至测量端。

对于对噪声非常敏感的仪器,应将本仪器的接地(Ground)端子良好接入大地, 以减小仪器的干扰噪声。

注意

一般情况下,HI端应接电路的高电位侧,LO端应接电路的低电位侧。

2.4 后面板各部件说明

序号	各部分名称	各部分说明
15	Fuse	T500mA 250V
16	AC220V	电源插孔,交流电源输入接口
17	Ground	接地螺栓
18	排风扇	散热风扇出风口
19	Ext.Adjust	外部调节接口
20	Ext.Status	外部控制接口
21	Sync In	同步输入接口
22	Sync Out	同步输出接口
23	RS232	串行通讯接口
24	USB	USB 通讯接口

表 2-3 后面板各部件名称及说明

2.5 连接电源

SY54A精密程控直流电阻箱支持以下规格的交流电源输入:

输入电压	电源频率	最大容量
AC200~240V	45 \sim 65Hz	40VA Max

表2-4 交流输入电源规格

请严格按照如下步骤连接电源。

1. 检查输入电源

请确保欲连接到仪器的交流电源符合表2-3中的要求。

2. 检查保险丝

仪器出厂时,已安装指定规格的保险丝。请参考仪器后面板"Fuse"的说明或见表 2-5,确保保险丝与规定规格相匹配。

表2-5 保险丝规格

规格参数	外形尺寸
T500mA 250V	Ф50×20mm

3. 连接交流电源

请使用附件提供的电源线将仪器连接至交流电源。

警告

为避免电击,请确认仪器已经正确接地。

2.6 开机检查

 Power

 按下前面板电源开关键

 , 仪器启动并执行自检操作,若自检通过,

屏幕会显示开机主界面(见图2-5和图2-6),否则,系统会提示相应的自检失败信息。

	9	y c	<u>19</u>	199		
实际输出	99.999	986 kQ OF	PER			
优化电阻	99.999	9986 kQ 最大电压		141 V		
输出偏差	-0.00	000 %	最大电流	1.4	1 mA	
单位	调出	保存	蜂鸣器	面板锁	更多	
kΩ			已打开	已关闭		
1	Û	ſ	Û	Û	Ń	

图 2-5 电阻模式主画面

提示

关机后若再次开机,请保证两次的开机时间间隔大于5s。

在开机状态,按一下前面板电源开关键 _______,该按键弹出,显示器熄灭,

仪器关机。

2.8 更换保险丝

所需保险丝的规格如表2-5所示。您也可以参考 "2.4 后面板各部件说明"中 "表 2.3 后面板各部件名称及说明"第15项 "Fuse"的说明。

如需更换保险丝,可按如下步骤进行操作。

1. 关闭仪器电源,移除电源线。

2. 使用小一字螺丝刀插入电源插口处的凹槽,轻轻撬出保险丝座,见图2-7。

图 2-7

3. 取出保险丝并更换指定规格的保险丝(请参考表2-5)。

4. 将保险丝座重新插入电源插口(请注意方向)。

警告

为避免人身伤害,更换保险丝前,请先切断电源;为避免电击或火灾,连接电源之前,请选择与实际输入电压相匹配的电源规格,并更换规定规格的保险丝。

3 基本操作

3.1 工作模式的切换

本仪器有两种工作模式,即"电阻模式"和"温度模拟模式"。

3.2 输出状态的切换

仪器具有三种输出状态,在电阻模式和温度模拟模式下略有不同。

最小输出 按 Min 按键后,该按键灯点亮,屏幕右上角显示"最小"。电阻模

式下仪器输出端子 HI 和 LO 之间输出最小电阻值 0.01Ω;温度模拟模式下仪器输出端子 HI 和 LO 之间输出当前传感器温度范围内最小温度值对应的电阻值。

给定输出 按│ 0per │ 按键后,该按键灯点亮,屏幕右上角显示"给定"。电阻模

式下仪器输出端子 HI 和 LO 输出给定的电阻值;温度模拟模式下仪器输出端子 HI 和 LO 输出当前传感器对应给定温度值的电阻值。

最大输出 按 Max 按键后,该按键灯点亮,屏幕右上角显示"最大",电阻模

式下仪器输出端子 HI 和 LO 之间输出最大电阻值 100.00000kΩ;温度模拟模式下仪器 输出端子 HI 和 LO 之间输出当前传感器温度范围内最大温度值对应的电阻值。

注意:

1. 开机时,输出初始状态为上次关机时的状态。

2. 在最小输出和最大输出状态下,屏幕上给定的电阻值或模拟温度值只被显示, 而不被输出。

3.3 锁定/解除锁定

在初始界面 (见图 3-1):

图 3-1

3.3.1 锁定

F5 在图 3-1 画面状态,长按 按键1秒以上,屏幕右上方显示 图标,且面 板锁下方显示"已锁定"。如果蜂鸣器为"已打开"状态,则蜂鸣器会发出响声,表示 面板已经进入锁定状态(见图 3-2):

面板被锁定后,除了 **F5** 按键可以进行解锁操作,其它所有按键均无效,可以有效防止误碰、误操作。

3.3.2 解除锁定

在锁定状态,按

按键,底部功能栏变为图 3-3 所示的画面。

	9	99	<u>990</u>	<u>)</u>	$\mathbf{g}^{\mathbf{k}\Omega}$	
实际输出	99.999	986 kΩ (OPER		•	
优化电阻 输出偏差	99.999986 kΩ -0.00000 %		最大电压 最大电流	141 V 1.41 mA		
解锁					取消	
				0		

然后按 ^{[F1}] 解锁,屏幕右上方 图标消失,且面板锁下方显示"未锁定", 表示锁定状态已解除,回到初始界面(见图 **3-1**)。

面板锁的设置状态没有记忆功能,关机后再开机状态重置为未锁定状态。

3.4 按键音的打开与关闭

在初始界面,屏幕下方 | F4 按键对应的位置显示蜂鸣器的当前状态(见图

3-4)。当前状态为"己打开"时,按键音被打开,任何一个操作将伴有按键音。当前状态为"已关闭"时,按键音被关闭,任何操作都不会发出按键音。

按键音的设置状态具有记忆功能,关机后再开机仍保持之前的设置状态。 仪器的蜂鸣器出厂默认设置为打开状态。

	9	9.5	995	199	J	
实际输出	99.999	986 kQ OF	PER		-	
优化电阻 输出偏差	99.999 -0.00	986 k Q 000 %	最大电压 最大电流	14 1.4	1 V 1 mA	
单位 kΩ	调出 	保存 	蜂鸣器 已打开	面板锁 已关闭	更多	
						<u> </u>

图 3-4

3.4.1 关闭按键音

在图 **3-4** 画面状态,蜂鸣器为己打开状态时,按 F⁴ 按键将关闭蜂鸣器,此时蜂鸣器下方显示"己关闭"(见 **3-5**):

当蜂鸣器为"已关闭"状态,所有按键操作均没有按键音。

3.4.2 打开按键音

在蜂鸣器为"已关闭"状态,按 ^{F4} 按键将打开按键音,此时所有按键操作 均有按键音,并且蜂鸣器下方显示"已打开"(见图 **3-4**)。

3.5 电阻模式下的基本操作

电阻模式下的基本操作包含以下几个部分:

- Ⅰ 电阻单位的切换
- Ⅰ 电阻值的设定
- Ⅰ 常用电阻值的存储
- Ⅰ 常用电阻值的调用

3.5.1 电阻单位的切换

在电阻模式初始界面,单位的状态决定了给定电阻值的单位(见图 3-6):

当电阻单位是 Ω 时, 电阻值的显示范围是 0.01~100000.00;

当电阻单位是 KΩ 时,电阻值的显示范围是 0.00001~100.00000。

按 ^{F1} 可在 KΩ 和 Ω 之间切换。当前电阻的单位是"kΩ",所以按 ^{F1} 单位切换为 "Ω" (见图 3-7):

图 3-7

后

注意

只有电阻模式下才可进行单位切换。温度模拟模式下仅使用摄氏度℃单位,无需单 位切换。

3.5.2 电阻值的设定

本仪器可通过3种方式设定电阻值:

- 1. 使用数字键盘
- 2. 使用方向按键
- 3. 使用旋钮+方向按键

	使田数字键盘	4 5 6 设定由阳值
•	反而效于啶血	
		+/- 0 ·

按数字按键输入相应的数值,输入完成后按 | Enter | 按键确认。

输入时数字闪烁,如果在 10 秒内没有重新设定新的数值,则闪烁状态消失,放弃 本次输入的数值。

如果输入错误,可按 Back 按键删除一位数字,或者按 Esc 按键放弃本次输入的数值。

对于电阻单位是Ω时,输入数值的范围是0.01~100000.00;

对于电阻单位是 KΩ 时,输入数值的范围是 0.00001~100.00000。

如果输入的小数位数超过了容许位数,按 Enter 按键后将自动四舍五入。如果输入的数值大于或小于允许的范围,按 Enter 按键后,将自动调整到最大值或最小值。

例子

在电阻单位是 Ω 时,输入了 1000000,按 [Enter] 按键后,自动调整到
 100000.00Ω;

2. 在电阻单位是 Ω 时,输入了 0.025,按 Enter 按键后,自动调整到 0.03Ω。

3. 在电阻单位是 KΩ 时,输入了 1000,按 [Enter] 按键后,自动调整到
 100.00000KΩ;

4. 在电阻单位是 KΩ 时,输入了 3.523344,按 Enter 按键后,自动调整到
 3.52334KΩ。

注意

输入电阻值时,最高可以输入9位(包括小数点),当已输入9位,将无法再继续 输入。

I 使用方向按键 🔼 🔍 🔄 📄 设定数值	
按 🤇 📄 按键移动屏幕上电阻数值下方的箭头光标到需要设定的位置	1,按
△ 按键调节该位数字的数值大小。	
如果在5秒内没有重新设定新的数值,则箭头光标消失。	
如果直接按 🔷 🛛 按键,则默认调节上次箭头光标所指位置的数	值。
调整电阻值时,自动进位和借位。	
如果当前为在线输出状态,则输出电阻值跟随调整的电阻值即刻改变。	
调整后的电阻值不能通过按 Esc 按键撤销。	

3.5.3 常用电阻值的存储

本仪器提供 20 组常用电阻的记忆,用户可以将自己常用的电阻值保存到 20 组常用 电阻的某个位置,以方便用户快捷调出。

在电阻模式下,且在初始界面 (见图 3-8):

20

图 3-8

按

F3

按键后,切换到"常用电阻保存"列表界面,见图 3-9:

F4 F3 每一页可显示7组电阻列表,按 可快速翻页, 20 个列表共分3 页显示。选择保存位置序号的操作有以下几种:

3.5.4 常用电阻值的调用

在电阻模式下,且在初始界面 (见图 3-10):

按键后,切换到"常用电阻调出"列表界面,见图 3-11:

按 F2

3.6 温度模拟模式下的基本操作

温度模拟模式下的基本操作包含以下几个部分:

- Ⅰ 温度传感器的选择
- Ⅰ 温度值的设定
- Ⅰ 常用温度值的存储
- Ⅰ 常用温度值的调用

3.6.1 温度传感器的选择

本仪器支持 17 种常用温度传感器的模拟,具体规格和温度模拟范围见表 3-1:

序号	规格	温度范围	模拟误差
1	PT 100	-200∼+850 ℃	±0.2°C
2	PT 500	-200∼+850 ℃	±0.1℃
3	PT 800	-200∼+850 ℃	±0.1℃
4	PT 1000	-200∼+850 ℃	±0.1℃
5	Cu 100	-50∼+150 ℃	±0.2℃
6	NTC 1K B=3470	-30∼+179 ℃	±0.1℃
7	NTC 1.5K B=3470	-30∼+179° C	±0.1℃
8	NTC 2K B=3470	-30∼+179 ℃	±0.1℃
9	NTC 3K B=3470	-30∼+179 ℃	±0.1℃
10	NTC 4.7K B=3470	-30∼+179° C	±0.1℃
11	NTC 5K B=3470	-30∼+179° C	±0.1℃
12	NTC 5K B=3950	-30∼+300 ℃	±0.1℃
13	NTC 10K B=3380	-26∼+179° C	±0.1℃
14	NTC 10K B=3470	-25∼+179 ℃	±0.1℃
15	NTC 10K B=3950	-20∼+300 ℃	±0.1℃
16	NTC 20K B=3950	-8~+300℃	±0.1℃
17	NTC 30K B=3950	+0∼+300 ℃	±0.1℃

表 3-1 模拟温度传感器规格表

温度模拟是在温度传感器分度基础上进行的。所以在模拟温度时有必要确认所选的 温度传感器类型和规格。

在温度模拟模式下,且在初始界面(见图 3-12):

图 3-13

键或 Enter 按键确认选择。

3.6.2 温度值的设定

本仪器可通过3种方式设定温度值:

- 1. 使用数字键盘
- 2. 使用方向按键
- 3. 使用旋钮+方向按键

输入时数字闪烁,如果在 **10** 秒内没有重新设定新的数值,则闪烁状态消失,放弃 本次输入的数值。

如果输入错误,可按 Back 删除一位数字,或者按 Esc 放弃本次输入的数值。 温度设定的范围与选择不同的传感器有关,具体的传感器的有效温度范围在屏幕的 左侧有显示信息,或者参考表 3-1。如果输入的小数位数超过了容许位数,按 Enter 将 自动四舍五入。如果输入的数值超过了允许的有效温度范围,按 Enter 将自动调整到 极限值。

注意

输入温度值时,可输入7位(包括小数点,正负号),当已输入7位时将无法继续 输入。

Ⅰ 使用 🤇 📄 🔷 🔽 设定数值
按 < 📄 移动屏幕上温度数值下方的箭头光标到需要设定的位置,按
_ ^ _ 词节该位数字的数值大小。
如果在5秒内没有重新设定新的数值,则箭头光标消失。
如果直接按 ^ ,则默认调节上次箭头光标所指位置的数值。
调整温度值时,自动进位和借位。 如果当前为在线输出状态,则输出电阻值跟随调整的温度所对应的电阻值即刻改

变。

注意

调整后的温度值不能通过按 | Esc | 撤销。

如果当前为在线输出状态,则输出电阻值跟随调整的温度所对应的电阻值即刻改 变。如果在 5 秒内没有重新设定新的数值,则箭头光标消失。

调整温度值时,高位自动进位和借位。

注意

调节后的温度值不能通过按 | Esc | 撤销。

3.6.4 常用温度值的存储

本仪器提供 **20** 组常用温度的记忆,用户可以将自己常用的温度值保存到 **20** 组常用 温度的某个位置,以方便用户快捷调出。

在温度模拟模式下,且在初始界面(见图 3-14):

按

F3

后, 切换到"常用温度保存"列表界面, 见图 3-15:

共3页显示。选择温度存储位置序号的操作有以下几种:

使用以上任一种方法将箭头光标移至相应的存储位置序号,然后按 **F5** 保存 当前值。

3.6.6 常用温度值的调用

在温度模拟模式,且在初始界面(见图 3-16):

图 3-17

然后选择温度存储位置的序号。选择温度存储位置序号的操作有以下几种:

Ⅰ 使用数字键盘直接输入相应的序号

Enter 出当前值。

4 菜单操作

所有菜单功能都采用多功能按键快捷操作方式,这些多功能按键位于屏幕下面,见 图 **4-1**:

图 4-1

其中 F1-F6 为多功能按键,配合屏幕提示完成所有菜单操作。(Menu Exit) 为菜单快速 退出按键,可快速退出菜单,返回上一级菜单。

常用功能都在初始画面的下方提示,按下相应位置的多功能键即可执行。

菜单为三层结构,第一层为初始界面,其他界面时可按 Kenu 返回初始界面。

开机后仪器进入初始画面(图 4-2):

屏幕下方显示第一层菜单,对应 F1-F6 多功能按键依次为:

I	F1	单位
L	F2	调出
L	F3	保存
L	F4	蜂鸣器
L	F5	面板锁
L	F6	更多

第一层菜单在"**3 基本操作**"章节中已经详细介绍,本章将介绍第二层和第三层菜 单的各项功能。

其它更多功能操作可按 [6 进入第二层菜单, 画面见图 4-3:

图 4-3

对应 F1-F6 多功能按键,屏幕下方依次为:

- **I** F1 上一页
- I F2 RS232 设置
- I F3 USB 设置
- Ⅰ F4 同步设置
- Ⅰ F5 调节设置
- I F6 下一页

再次按 [6] 进入第三层菜单,画面见图 4-4:

图 4-4

对应 F1-F6 多功能按键,屏幕下方依次为:

RS-232

I	F1	上一页

- Ⅰ F2 位置校正
- Ⅰ F3 残余电阻
- Ⅰ F4 变差测定
- Ⅰ F5 误差标定
- I F6 系统

所有功能在这三层菜单中分布,按对应的多功能键可进入相应功能。

4.1 RS232 参数设置

仪器后面板的 **反** 接口可以与上位机连接建立通讯,实现通讯控制功能。在使用该接口之前,需要对该接口进行配置。

无论是"电阻模式"还是"温度模式",均可以对 RS232 的参数进行设置。下面以 在"电阻模式"下为例介绍进入设置界面和设置过程。

图4-5

图4-6

可以进入 RS232 设置 (见图 4-7):

F2

此时按

图4-7

RS232设置界面的可设定参数项有以下几个:

RS232开关:需要使用时打开,不使用时可关闭。仪器出厂默认为打开。

波特率:波特率可选择1200、2400、4800、9600、19200、38400、57600和 115200bps,出厂默认值为9600bps。

校验方式:可选择无校验、偶校验和奇校验,出厂默认值为无校验。

停止位:可选择1位或2位,出厂默认值为1位。

图4-8

此时,按下待设定波特率下方对应的按键即可设定相应的波特率。

进入校验方式选择画面,按下待设定校验方式下方对应

的按键即可设定相应的校验方式(见图 4-10):

在图 4-7 画面, 按

F3

按键即可设定相应的停止位。(见图 4-11):

RS232 与上位机的连接:使用一条 USB 转 RS232 的线,将 USB 公头接在上位机的 USB 接口上,再将 RS232 公头接在仪器后面板的 (1997) 接口上,然后将 仪器的 RS232 开关打开,波特率、校验方式和停止位跟上位机配置为相同的参数完成 连接。

4.2 USB 参数设置

仪器后面板的 按 接口可以与上位机连接建立通讯,实现通讯控制功能。在使 用该接口之前,需要对该接口进行配置。

无论是"电阻模式"还是"温度模式",均可以对 USB 的参数进行设置。下面以在 "电阻模式"下为例介绍进入设置界面和设置过程。

在初始界面(见图4-12):

USB

	9	9.5	995	195	J	
实际输出	99.999	986 kQ OP	PER		-	
优化电阻 输出偏差	99.999 -0.00	986 k Q 000 %	最大电压 最大电流	14 1.4	1 V 1 mA	
单位 kΩ	调出 	保存 	蜂鸣器 已打开	面板锁 已关闭	更多	
	1	[

图4-12

图4-13

此时按

F3

F6

按

可以

可以进入 USB 设置(见图 4-14):

图4-14

USB设置界面的可设定参数项有以下几个:

USB开关: 需要使用时打开,不适用时可关闭。仪器出厂默认为打开。

波特率:波特率可选择1200、2400、4800、9600、19200、38400、57600和 115200bps,出厂默认值为9600bps。

校验方式:可选择无校验、偶校验和奇校验,出厂默认值为无校验。

停止位:可选择1位或2位,出厂默认值为1位。

按 **F1** 可打开或关闭 USB 端口。

按 **F2** 进入波特率设定画面,按下待设定波特率下方对应的按键即可设定相应的波特率 (见图 **4-15**):

此时,按下待设定波特率下方对应的按键即可设定相应的波特率。

在图 **4-14** 画面,按 ^{F3} 进入校验方式选择画面,按下待设定校验方式下方对 应的按键即可设定相应的校验方式 (见图 **4-17**):

图4-17

在图 **4-14** 画面,按 ^{F4} 进入停止位设定画面,按下待设定停止位下方对应的 按键即可设定相应的停止位。(见图 **4-18**):

图4-18

设置完成后,可连续按 (Menu Exit) 逐层退出设置菜单。 USB 与上位机的连接:使用一条 USB Type-B 2.0 的线,将 USB 公头接在上位机 的 USB 接口上,将 Type-B 公头接在仪器后面板的 运路 接口上,然后将仪器的 USB 开关打开,波特率、校验方式和停止位跟上位机配置为相同的参数完成连接。

4.3 同步设置

同步功能可将一台仪器的输出模式、输出状态和输出值复制到另一台或多台仪器 上。比如改变一台仪器的给定电阻,其他和这台仪器同步的仪器将同时按这台仪器的给 定电阻值输出。

使用同步功能,需要将两台或多台仪器后面板的

的接口使用两

端带 BNC 头的同轴电缆按规定进行连接,并将一台仪器配置为主机,其他仪器配置为 43 从机。而且波特率也要保持一致。

无论是"电阻模式"还是"温度模式",均可以对同步参数进行设置。下面以在"电阻模式"下为例介绍进入设置界面和设置过程。

在初始界面(见图4-19):

图4-19

图4-20

可以进入同步设置(见图4-21):

图4-21

同步设置界面的可设定参数项有以下几个:

同步开关: 需要使用时打开, 不使用时可关闭。出厂默认为关闭。

波特率:波特率可选择 1200、2400、4800、9600、19200、38400、57600 和 115200bps,出厂默认值为 9600bps。

同步方式:同步方式可选择主动方式(作为主机)和被动方式(作为从机),出厂 默认值为被动方式。

图4-23

然后按下待设定波特率下方对应的按键即可设定相应的波特率。

在 **4-21** 画面,按 **F3** 选择同步方式可切换"主动"或"被动"。当需要本机 作为主机,并控制其它仪器时,本机需要设定为"主动";当需要本机作为从机,接受 主机的同步控制时,本机需要设定为"被动"。

设置完成后,可连续按 (Menu) 逐层退出设置菜单。

仪器之间的连接方式见图4-24,图4-25:

图4-24 两台仪器同步级联

图4-25 多台仪器同步级联

所有级联到同步连接上的仪器,需要将"同步开关"打开,波特率要设置一致, 第一台仪器的同步方式应设置为"主动",其余仪器要设置为"被动"。

例:将需要同步的仪器按上面的连接方式连接后,在主机(设置主动方式的仪器) 上输入一个给定电阻值,按 Enter 确认输入后,所有仪器都会输出此给定电阻值。

注意

同步功能和调节功能不可以同时使用,同步功能的优先级比调节功能要高,所以使 用调节功能时需要关闭同步开关。

4.4 调节设置

当需要仪器被外部触发信号进行增量减量控制时,可以使用调节设置功能。此时仪 器是受控制的,会对相应的控制信号做出相应的动作。

在仪器后面板的 返 接口输入控制信号,可控制仪器的输出状态在"MIN"、 "OPER"和"MAX"之间切换。该功能对应"调节设置"的"状态开关"。 在仪器后面板的 返 接口输入控制信号,可按预设的"调节增量"值,增大或

减小当前给定电阻值或模拟温度值。该功能对应仪器的"调节增量"和"调节开关"。

4.4.1 电阻调节设置

在电阻模式初始界面(见图4-27):

此时按 「5 可以进入调节设置 (见图 4-29):

图4-29

在"电阻模式"下进入调节设置界面,可设置电阻调节方式和参数。可设定参数项 有以下几个:

调节开关:需要使用时打开,不使用时需关闭。

调节增量:调节增量可选择"自定义"、0.01Ω、0.02Ω、0.05Ω、0.1Ω、0.2Ω、0.5Ω、
1Ω、2Ω、5Ω、10Ω、20Ω、50Ω、100Ω、200Ω、500Ω、1KΩ、2KΩ、5KΩ、10KΩ、
20KΩ、50KΩ,出厂默认值为 0.01 Ω。

状态开关:需要使用时打开,不适用时可关闭。

图 4-30

当"状态开关"设置为"己关闭"时,仪器的 () 接口被关闭,不再受外部电 ***

当调节开关为打开状态时,仪器的电阻或温度设定值可受

的控制。当端口无输入脉冲信号时不动作;输入一个电平为+5V的正脉冲信号时,增加 一个步长;输入一个电平为-5V的脉冲时,减少一个步长。

Ext Adjust 当调节开关为关闭状态时, 仪器的 0 接口被关闭,不再受外部脉冲信号的控

制。

例子

打开状态开关,将外部控制信号连接至仪器的

Ext Statu

一个 +5V 电平时, 仪器会设置为在线输出状态; 当外部控制信号为 0V 电平或者没有 施加外部信号时, 仪器会设置为最大值输出状态; 当外部控制信号输出一个 -5V 电平 时, 仪器会设置为最小值输出状态。

出一个 5V 的负脉冲时, 仪器会减少 0.2Ω。

Ext Adjust

在温度模式初始界面(见图4-27):

1.皮模式					给定	
RTD PT 100 -200~+8	50°C		10	0.0) °C	
实际输出	100.0	052 °C OP	ER			
优化电阻	138.50686 Ω		最大电压	5.2	6 V	
諭出偏差	-0.000	061 %	最大电流	38.	0 mA	
上一页	RS232设置 	USB设置 	同步设置 	调节设置 	下一页	
F1	F2	F3	F4	F5	F6	,
						(

图4**-**28

可以进入调节设置(见图 4-29):

F5

此时按

图4-29

在"温度模式"下进入调节设置界面,可设置温度调节方式和参数。设定参数项有 以下几个:

调节开关:需要使用时打开,不使用时需关闭。

调节增量:调节增量可选择"自定义"、0.1℃、0.2℃、0.5℃、1℃、2℃、5℃、 10℃、20℃、50℃、10℃、20℃、50℃、100℃,出厂默认值为1℃。

状态开关:需要使用时打开,不使用时可关闭。

图 4-30

时仪器给定输出(即"OPER"输出状态);输入-5V电平时仪器输出最小值(即"MIN" 输出状态)。

当"状态开关"设置为"己关闭"时,仪器的 () 接口被关闭,不再受外部电

Ext Statu

平的控制。

当调节开关为打开状态时,仪器的温度设定值可受 (接口的脉冲信号的控

制。当 使 接口无输入脉冲信号时不动作;输入一个电平为+5V的正脉冲信号时, *** 增加一个步长;输入一个电平为-5V的脉冲时,减少一个步长。

Ext. Adjust 当调节开关为关闭状态时,仪器的

制。

例子

打开状态开关,将外部控制信号连接至仪器的

Ext Statu

一个 +5V 电平时, 仪器会设置为给定输出状态; 当外部控制信号为 0V 电平或者没有 施加外部信号时, 仪器会设置为最大值输出状态; 当外部控制信号输出一个 -5V 电平时, 仪器会设置为最小值输出状态。

当外部控制信号输出一个 5V 的正脉冲时,仪器会增加 0.1℃;当外部控制信号输出一 个 5V 的负脉冲时,仪器会减少 0.1℃。

4.5 位置校正

仪器内有精密机械和高精度电子器件,所以当仪器经过移位、运输或震动后,可能 会造成机械位移。在这种情况下,为了保证仪器输出的精度,建议对仪器进行位置校正。

仪器具有位置校正操作界面,可以手动操作校正,也可以使用自动校正功能。

在初始界面(见图4-32):

图4-32

按两次 **F6** 进入第三层菜单 (见图 **4-33**):

按 F1 启动自动校正过程,仪器自动对零位和满位各交替进行三次校正,完 成后停止。也可以使用零位校正和满位校正进行手动校正。

一般情况下,经过一次零位校正和一次满位校正即可完成校正工作。如果校正结束 时仍有机械受阻的情况,建议再做一次零位校正和一次满位校正,以确保机械位置准确 定位。

当然,用户也可以按 [^{F1}] 进行自动校正。自动校正实际上是进行了 3 次零位 和满位校正,即仪器自动对零位和满位往复 3 次,然后停止,校正完成。

警告

不建议频繁进行此操作!过多的位置校正动作会加速内部精密开关触头的磨损,从 而造成接触电阻不稳定。

4.6 残余电阻测定

警告

不建议用户进行该项操作!

残余电阻的测定工作需要高精度电阻测量仪器,以及恒温、恒湿环境,一般用户不 具备该条件。因此,建议该项操作由生产厂家或计量单位进行。

仪器出厂时,残余电阻标定为 0.01Ω±1.0mΩ,保证了最小输出电阻的精度。该值 也作为仪器的最小输出电阻。

当残余电阻超差时,才允许进行残余电阻测定。残余电阻测定共有 11 个测点序列, 对应为-5~+5 测点号。

测定时,需将本仪器置于恒温、恒湿环境中,并放置 24 小时。将高精度电阻测量 仪器采用 4 线测量法与本仪器输出端子连接,做好测量准备。

在初始界面(见图4-35):

图4-35

按两次 **F6** 进入第三层菜单(见图 **4-36**):

残余电阻测定共有11个测点,从测点-5到测点+5,对应11个标称电阻,范围是 0.0090~0.0110Ω。进行残余电阻测定时,需要对每个测点的实际输出电阻进行测量, 然后将实际测量值输入到仪器中。

画面中:

标称电阻:表示该测点序列的标称电阻值

测定电阻:表示该测点序列的实际测定电阻值,该数值由人工输入或通讯指令输入。

允许偏差:测定电阻值和标称电阻值之间的允许偏差值

实际偏差:实际测定电阻值和标称电阻之间的实际偏差值

例子

根据上面的步骤进入残余电阻测定后,按 ^{[1}] 跳转到 -5 测点序列,待高精度 电阻测量仪器读数稳定后,用数字键盘输入测量到的电阻值,然后按 Enter 确认,该 电阻测定值就会保存到仪器内部,且屏幕上面显示此次测量到的电阻值,这样就完成了 对该测点的测定。然后切换到下一个或其它测点,重复上述过程,完成其它测点的测定。

4.7 变差测定

警告

不建议用户进行该项操作!

变差测定工作需要高精度电阻测量仪器,以及恒温、恒湿环境,一般用户不具备该 条件。因此,建议该项操作由生产厂家或计量单位进行。

开关变差是电阻箱一个重要的检验标准,它反映了电阻箱输出电阻的重复性能。 在初始界面(见图**4-38**):

	3	ສ .ະ	りつこ	リン、	7	
实际输出	99.999	986 k Q OF	PER			
优化电阻 输出偏差	99.999 -0.00	986 k Q 000 %	最大电压 最大电流	14 1.4	1 V 1 mA	
单位 kΩ	调出 	保存 	蜂鸣器 已打开	面板锁 已关闭	更多	
	1		1	1		

图4-38

按两次 **F6** 进入第三层菜单 (见图 **4-39**):

图4-39

此时按

F4

可以进入变差测定(见图 4-40):

图4-40

当前倍率:当前的阻值倍率,共有0.01Ω,0.1Ω,1Ω,10Ω,100Ω,1KΩ,10KΩ 七个倍率

变差序列:当前的变差序列,共有1~7七个变差序列

当前档位:当前的档位,共有 0~10 十一个档位

跳到变差序列 2, 按

往复计数:当前倍率变差序列往复动作的次数

例子

再按

进入变差测定后,按 [1	跳到变差序列 1,按 F5 进行往复动作,等待				
往复动作完成后,在其他每个序列	都重复上面的步骤。然后在输出端子处用高精度测量				
仪器以四线测电阻法测出电阻值,	等待电阻值稳定后记做 MO。				
再按 F1 跳到变差序列 1	I,按 F5 进行往复动作,等待往复动作完成后,				
在输出端子处用高精度测量仪器以四线测电阻法测出电阻值,等待电阻值稳定后记做					
M1;则第一个开关的变差为∆1=M	IO-M1;				
[<u>[</u> 2]	[[5]				

在输出端子处用高精度测量仪器以四线测电阻法测出电阻,等待电阻值稳定后记做 M2;则第二个开关的变差为Δ2=M1-M2;

进行往复动作,等待往复动作完成后,

一直重复到变差序列7得到七个开关的变差,取所有变差中的最大值为仪器的变差。 该变差不应大于最小步进电阻值的允许绝对误差值。

4.8 误差标定

警告

不建议用户进行该项操作!

误差标定工作需要高精度电阻测量仪器,以及恒温、恒湿环境,一般用户不具备该 条件。因此,建议该项操作由生产厂家或计量单位进行。

误差标定共有**70**个测点,从测点**1**到测点**70**,对应**70**个标称电阻。进行误差标定时, 需要对每个测点的实际输出电阻进行测量,然后将实际测量值输入到仪器中。

在初始界面(见图4-41):

图4-41

此时按

F5

可以进入误差标定(见图 4-43):

标称电阻:此测点序列的标称电阻值

标定电阻:实际测量此测点序列的电阻值,该数值由人工输入或通讯指令输入。

允许偏差:标定电阻和标称电阻之间的允许偏差值

实际偏差:标定电阻和标称电阻之间的实际偏差值

例子

进入误差标定后,按 ^{F1} 跳转到测点序列 1,在输出端子处用高精度测量仪器 以四线测电阻法测出电阻值。等待电阻值稳定后,用数字键盘输入测量到的电阻值,然 后按 Enter 确认将该电阻值保存到仪器内部,且屏幕上显示出此次测量到的电阻值, 这样就完成了此次误差标定。其他测点序列选中后也是相同的办法。 在初始界面(见图4-44):

图4=44

按两次

F6

进入第三层菜单(见图 4-45)

	9	y c	<u>19</u>	199	
实际输出	99.999	9986 kg OF	PER		
优化电阻	99.999	986 kΩ	最大电压	14	1 V
输出偏差	-0.00	0000 %	最大电流	1.4	1 mA
上一页	位置校正	残余电阻	变差测定	误差标定	系统

图4-37

设备信息包含设备信息、版本信息、基本参数、示值误差和工作环境等有5个项目。 进入后的默认界面是仪器的基本信息,点按屏幕下方多功能按键显示相应的项目信息。

5 通讯接口和通讯规约

本仪器具有两个通讯接口,均支持 SCPI 通讯规约。两个通讯接口的通讯参数可 通过面板进行设置。

5.1 通讯接口

本设备提供两种通讯接口,即 RS232 和 USB,位于设备后面板,见图 5-1

图 5-1

本仪器的 RS232 接口(标准配置)和 USB 接口均可与计算机进行通信,完成所 有仪器功能。

5.1.1 RS232C

RS232 是目前广泛采用的串行通讯标准,用于实现计算机与计算机之间、计算机 与外设之间的数据通讯。

大多数串行口的配置通常不是严格基于 RS232 标准,现在的计算机基本使用简化 的 9 芯连接器。

本仪器采用 RS232 的最小子集,信号定义如下:

RS232 接口为 DB9 针连接器,本设备只使用了其中 3 针,具体定义见表 5-1:

信号	符号	9芯连接器引脚号
发送数据	TXD	2
接收数据	RXD	3
接地	GND	5

表 5-1 RS232 引脚定义

5.1.2 USB

USB 接口为 USB-B 方形连接器,可使用标准 USB 连接线连接至计算机端。

在仪器开机状态,使用 USB 连接线连接至计算机端后,计算机将自动识别并分配 一个 COM 端口。

USB 和 RS232 接口具有相同的功能,均支持 SCPI 规约。

5.1.3 仪器的默认通信设置

仪器上 RS232 和 USB 接口默认的通讯参数设置如下:

- Ⅰ 波特率: 9600bps
- Ⅰ 数据位:8位
- I 停止位: 1
- Ⅰ 校验位:无

用户可根据实际需求设置 RS232 和 USB 接口的波特率等参数,具体设置方法参考本说明书的 4.1 和 4.2 章节。

5.1.4 握手协议

本仪器采用软件握手方式,高级语言软件编程工程师应严格按以下握手协议进行 计算机编程软件的编制:

仪器命令只接受 ASCII 格式, 命令响应也返回 ASCII 码。

主机发送的命令串必须以"\n"为结束符,仪器命令解析器在收到结束符后才开 始执行命令串。

5.2 SCPI 通讯规约简介

SCPI 是 Standard Commands for Programmable Instruments(可程控仪器标准 命令)的缩写,是一种仪器行业广泛采用的通讯语言。鹤壁盛源生产的系列程控电阻 箱所使用的命令集均采用 SCPI 协议标准。

5.2.1 命令语法

所有命令不分大小写,全为大写、全为小写或者有大写有小写均会接受。本文描述中的大写和小写字符仅仅是为了区分关键字。

大写字符部分是关键字,是必须的。小写字符部分不是必须的,可带可不带。但 是,如果带小写字符部分,就必须完整书写。

例如,OUTP和OUTPUT都是可接受的格式。可以使用大写或小写字母。因此,OUTP、Ouput和outp等都是可接受的格式。其他格式(如OUT和OUTPU等)是无效的并会产生错误。

对于较短的程序行,可以发送缩写格式的命令。如果要获得较好的程序可读性, 可以发送长格式的命令。

命令中间不允许用空格分隔。应使用冒号":"将命令关键字与下一级的关键字分 隔开。

带有参数时,用一个英文空格将命令和参数分隔开。命令参数中的电阻值最多输入9位数(含小数点),温度值最多输入5位数(含小数点)。

电阻数值的单位为 Ω 时,可以省略单位直接写数字,也可以数字后带"R";电阻数值的单位为 kΩ 时,必须在数字后带"k"或"kR",不区分大小。

温度数值可以不带单位,也可以数字后带"C"。同样不区分大小写。

一条命令的尾部必须加上换行或者回车换行符。可以是换行: 0x0A; 或者是回车+换行: 0x0D 0x0A。

同一条命令,一般都有设置和查询两种形式。例如 OUTPut:STATus MINimum 是 设置命令,而 OUTPut:STATus?是查询命令。

主机一次只能发送一条独立的命令给仪器,仪器命令解析器在捕捉一帧命令结束 时开始解析。

5.2.2 命令解析规则

命令解析器只对 ASCII 码进行解析和响应。

SCPI 命令串必须以"\n"(ASCII 码为 0x0A)为结束符,命令解析器在收到结束符后才开始执行命令。

命令解析器收到错误解析时将终止该命令的后续解析,当前指令作废。

命令解析器对命令串的解析不区分大小写。

命令解析器一次只接受一条指令。

本章使用了一些符号,这些符号并不是命令的一部分,只是为了能更好的对命令 串的理解。下面列出了 OUTPut 子系统的一部分,用于说明符号的作用:

OUTPut:RESistance {<range>|MINimum|MAXimum}

大括号"{}"中包含了给定命令字符串的参数选项。大括号不随命令字符串一起 发送。

竖条"|"隔开给定命令字符串的多个参数选择。例如,在上述命令是参数 {<range>|MINimum|MAXimum}中,您可以选择<range>在规定范围内指定一个值, 也可以选择"MINimum"或"MAXimum"其中一项。竖条不随命令字符串一起发送。

尖括号 "<>" 表示必须为括号内的参数在对应范围内指定一个值。例如,上述的 语句中,尖括号内的参数对应的就是电阻值的范围。尖括号不随命令字符串一起发送。

方括号 "[]"中的文字表示可选命令,您可以在其中选择一项输入,也可以不选择 使用默认值。

5.2.4 SCPI 命令参考

OUTPut	输出子系统
CONFigure	配置子系统
POSition	位置校正子系统
INHerent	残余电阻子系统
CALibration	误差标定子系统
VARiation	变差子系统
*IDN?	仪器信息查询子系统
*RST	重置仪器

5.3.1 指定输出状态

命令格式:OUTPut:STATus {MINimum|MAXimum|OPERate|ONLine} 命令正确解析后,仪器立即执行但不返回消息。 例如: 输出最小状态 OUTPut:STATus MINimum 输出最大状态 OUTPut:STATus MAXimum 输出给定状态 OUTPut:STATus OPERate 输出给定状态 OUTPut:STATus ONLine

5.3.2 查询当前输出状态

命令格式:OUTPut:STATus?	
返回格式: OUTPut:STATus {MI	Nimum OPERate MAXimum}
例如:	
查询当前输出状态	OUTPut:STATus?
返回当前为最小输出状态	OUTPut:STATus MINimum
返回当前为最大输出状态	OUTPut:STATus MAXimum
返回当前为在线输出状态	OUTPut:STATus OPERate

5.3.3 给定电阻输出

命令格式: OUTPut:RESistance {<range>|MINimum|MAXimum} 命令正确解析后,仪器立即执行但不返回消息。 例如: 给定电阻 1234.56Ω OUTPut:RESistance 1234.56 给定电阻 1234.56Ω OUTPut:RESistance 1234.56R 给定电阻 1.23456kΩ OUTPut:RESistance 1.23456kR 给定输出最小电阻 0.01Ω OUTPut:RESistance MINimum 给定输出最大电阻 100kΩ OUTPut:RESistance MAXimum

5.3.4 查询当前给定电阻值

命令格式: OUTPut:RESistance? 返回格式: OUTPut:RESistance <range> 例如: 查询当前给定电阻 OUTPut:RESistance? 返回当前给定电阻是 1234.56Ω OUTPut:RESistance 1234.56R

5.3.5 给定模拟温度输出

命令格式: OUTPut:TEMPerature {<range>|MINimum|MAXimum} 命令正确解析后,仪器立即执行但不返回消息。 例如: 给定温度 123.4℃ OUTPut:TEMPerature 123.4 给定温度 123.4℃ OUTPut:TEMPerature 123.4C 给定温度-123.4℃ OUTPut:TEMPerature -123.4 给定输出最低模拟温度 OUTPut:TEMPerature MINimum 给定输出最高模拟温度 OUTPut:TEMPerature MAXimum

5.3.6 查询当前模拟温度给定值

命令格式:OUTPut:TEMPerature? 返回格式:OUTPut:TEMPerature <range> 例如: 查询当前给定温度 OUTPut:TEMPerature? 返回当前给定温度是 123.4℃ OUTPut:TEMPerature +123.4C

5.3.7 给定输出模式

命令格式:OUTPut:MODe {RSET|TSET}
 命令正确解析后,仪器立即执行但不返回消息。
 例如:
 切换到电阻模式
 OUTPut:MODe RSET
 切换到温度模式
 OUTPut:MODe TSET

5.3.8 查询当前输出模式

命令格式:OUTPut:MODe? 返回格式:OUTPut:MODe {RSET|TSET} 例如: 查询当前输出模式 OUTPut:MODe? 返回当前为电阻模式 OUTPut:MODe RSET 返回当前为温度模拟模式 OUTPut:MODe TSET

5.3.9 当前电阻调节

命令格式: OUTPut:RESistance:{SUBTraction|ADDition} <range> 命令正确解析后,仪器立即执行但不返回消息。 例如: 当前电阻减小 0.1Ω OUTPut:RESistance:SUBTraction 0.1 当前电阻减小 0.1Ω OUTPut:RESistance:SUBTraction 0.1R 当前电阻增大 0.1Ω OUTPut:RESistance:ADDition 0.1 当前电阻增大 1.1kΩ OUTPut:RESistance:ADDition 1.1kR

5.3.10 当前温度调节

命令格式:OUTPut:TEMPerat	ure:{SUBTraction ADDition} <range></range>
命令正确解析后,仪器立即执行	行但不返回消息 。
例如:	
当前温度减小 0.1℃	OUTPut:TEMPerature:SUBTraction 0.1
当前温度增加 0.1℃	OUTPut:TEMPerature:ADDition 0.1
当前温度增加 0.1 ℃	OUTPut:TEMPerature:ADDition 0.1C

5.4 配置子系统

5.4.1 面板锁定

 命令格式: CONFigure:LOCK {ON|OFF|0|1}

 命令正确解析后, 仪器立即执行但不返回消息。

 例如:

 锁定面板
 CONFigure:LOCK 1

 锁定面板
 CONFigure:LOCK 0N

 解锁面板
 CONFigure:LOCK 0FF

 解锁面板
 CONFigure:LOCK 0FF

5.4.2 查询当前面板锁定状态

命令格式: CONFigure:LOCK?)
返回格式: CONFigure:LOCK	{ON OFF}
例如:	
查询当前面板锁定状态	CONFigure:LOCK?
返回面板已锁定	CONFigure:LOCK ON
返回面板已解锁	CONFigure:LOCK OFF

5.4.3 蜂鸣器的打开和关闭

命令格式: CONF	igure:BEEP {ON OFF 0 1}	
命令正确解析后,仪器立即执行但不返回消息。		
例如:		
打开蜂鸣器	CONFigure:BEEP 1	
打开蜂鸣器	CONFigure:BEEP ON	
关闭蜂鸣器	CONFigure:BEEP 1	
关闭蜂鸣器	CONFigure:BEEP OFF	

5.4.4 查询当前蜂鸣器的状态

命令格式: CONFigure:BEEP? 返回格式: CONFigure:BEEP {ON|OFF} 例如:查询蜂鸣器的状态CONFigure:BEEP?返回蜂鸣器已打开CONFigure:BEEP ON返回蜂鸣器已关闭CONFigure:BEEP OFF

5.4.5 位置校正的进入和退出

命令格式: CONFigure:POSition {ON|OFF|0|1}
 命令正确解析后,仪器立即执行但不返回消息。
 例如:
 进入位置校正
 进入位置校正
 CONFigure:POSition 1
 进入位置校正
 进入位置校正
 CONFigure:POSition ON
 退出位置校正
 UDNFigure:POSition 0
 区ONFigure:POSition OFF

5.4.6 查询当前位置校正的状态

命令格式: CONFigure:POSition?
 返回格式: CONFigure:POSition {ON|OFF}
 例如:
 查询是否进入位置校正
 CONFigure:POSition?
 返回当前已进入位置校正
 CONFigure:POSition ON
 返回当前已退出位置校正
 CONFigure:POSition OFF

5.4.7 残余电阻测定进入和退出

 命令格式: CONFigure:INHerent {ON|OFF|0|1}

 命令正确解析后, 仪器立即执行但不返回消息。

 例如:

 进入残余电阻测定
 CONFigure:INHerent 1

 进入残余电阻测定
 CONFigure:INHerent 0N

 退出残余电阻测定
 CONFigure:INHerent 0

 退出残余电阻测定
 CONFigure:INHerent 0

5.4.8 查询当前残余电阻测定的状态

命令格式: CONFigure:INHerent? 返回格式: CONFigure:INHerent {ON|OFF} 例如: 查询是否进入残余电阻测定 CONFigure:INHerent? 返回当前已进入残余电阻测定状态 CONF:INH ON 返回当前已退出残余电阻测定状态 CONF:INH OFF

5.4.9 误差标定的进入和退出

命令格式: CONFigure:CALibration {ON|OFF|0|1}命令正确解析后,仪器立即执行但不返回消息。例如:进入误差标定CONFigure:CALibration 1进入误差标定CONFigure:CALibration ON退出误差标定CONFigure:CALibration 0退出误差标定CONFigure:CALibration OFF

5.4.10 查询当前误差标定的状态

命令格式: CONFigure:CALibra	ition?
返回格式: CONFigure:CALibra	tion {ON OFF}
例如:	
查询是否进入误差标定	CONFigure:CALibration?
当前已进入误差标定	CONFigure:CALibration ON
当前已退出误差标定	CONFigure:CALibration OFF

5.4.11 变差测定的进入和退出

命令格式: CONFig	<pre>gure:VARiation {ON OFF 0 1}</pre>
命令正确解析后, 亻	议器立即执行但不返回消息。
例如:	
进入变差测定	CONFigure:VARiation 1
进入变差测定	CONFigure:VARiation ON

 退出变差测定
 CONFigure: VARiation 0

 退出变差测定
 CONFigure: VARiation OFF

5.4.12 查询当前变差测定的状态

命令格式: CONFigure:VARiation? 返回格式: CONFigure:VARiation{ON|OFF} 例如: 查询是否进入变差测定 CONFigure:VARiation? 当前已进入变差测定 CONFigure:VARiation ON 当前已退出变差测定 CONFigure:VARiation OFF

5.4.13 设定传感器

命令格式: CONFigure:SENSor <range>
 命令正确解析后,仪器立即执行但不返回消息。
 例如:
 设置传感器为 PT100
 CONFigure:SENSor 1
 设置传感器为 PT1000

5.4.14 查询当前传感器类型

命令格式: CONFigure:SENSor? 返回格式: CONFigure:SENSor <range> 例如: 查询当前传感器类型 CONFigure:SENSor? 返回当前传感器类型 CONF:SENS 1,PT100[385],-200~+850C

5.5 位置校正子系统

命令格式:	POSition:POINt {0 10 ZER0 FULL AUTo}
例如:	
零位校正	POSition:POINt 0
零位校正	POSition:POINt ZERo
满位校正	POSition:POINt 10
满位校正	POSition:POINt FULL
自动校正	POSition:POINt AUTo

5.6 残余电阻子系统

5.6.1 指定残余电阻测点

命令格式: INHere	nt:POINt {-5~+5 MINimum NEXT PREVious MAXimum}
命令正确解析后,	仪器立即执行但不返回消息。
例如:	
输出到测点-5	INHerent:POINt -5
输出到测点 0	INHerent:POINt 0
输出到测点+5	INHerent:POINt 5
输出到测点+5	INHerent:POINt +5
输出到第一测点-5	INHerent:POINt MINimum
输出到下一测点	INHerent:POINt NEXT

输出到上一测点INHerent:POINt PREVious输出到最后测点+5INHerent:POINt MAXimum

5.6.2 查询当前残余电阻测点

命令格式:	INHerent:POINt?[MINimum MAXimum]
返回格式:	INHerent:POINt {-5~+5 MINimum -5 MAXimum +5}
例如:	
查询当前测	点 INHerent:POINt?

返回当前测点-3	INHerent:POINt -3
查询最小测点	INHerent:POINt?MINimum
返回最小测点-5	INHerent:POINt MINimum -5
查询最大测点	INHerent:POINt?MAXimum
返回最大测点+5	INHerent:POINt:MAXimum +5

5.6.3 写入残余电阻测定电阻

命令格式: INHerent:RESistance <range> 命令正确解析后,仪器立即执行但不返回消息。 例如: 写入残余电阻测定值 0.01Ω INHerent:RESistance 0.01R

5.6.4 查询当前测点残余电阻标定值

命令格式: INHerent:RESistance? 返回格式: INHerent:RESistance <range> 例如: 查询当前测点残余电阻标定值 INHerent:RESistance? 返回当前测点残余电阻标定值 0.01Ω INH:RESistance 0.01R

5.7 误差标定子系统

5.7.1 指定误差标定测点

命令格式: CALibration:POINt {1~70|MINimum|NEXT|PREVious|MAXimum} 命令正确解析后, 仪器立即执行但不返回消息。 例如: 输出到测点 1 CALibration:POINt 1 输出到测点 2 CALibration:POINt 2 输出到第一测点 1 CALibration:POINt MINimum

输出到下一测点	CALibration:POINt NEXT
输出到上一测点	CALibration:POINt PREVious
输出到最后测点 70	CALibration:POINt MAXimum

5.7.2 查询当前误差标定测点

命令格式: CALibration:POINt?[MINimum]MAXimum] 返回格式: CALibration:POINt {1~70|MINimum 1|MAXimum 70} 例如: 查询当前测点 CALibration:POINt? 返回当前测点 45 CALibration:POINt 45 查询最小测点 CALibration:POINt?MINimum 返回最小测点 1 CALibration:POINt:MINimum 1 查询最大测点 CALibration:POINt?MAXimum 返回最大测点 70 CALibration:POINt:MAXimum 70

5.7.3 误差标定测点电阻操作

命令格式: CALibration:RESistance <range> 命令正确解析后, 仪器立即执行但不返回消息。 例如: CALibration: RESistance 0.020002R 写入标定值 0.020002Ω 写入标定值 0.110002Ω CALibration: RESistance 0.110002R 写入标定值 1.010002Ω CALibration: RESistance 1.010002R 写入标定值 20.01002Ω CAL ibration: RESistance 20.01002R CAL ibration: RESistance 100.0102R 写入标定值 100.0102Ω 写入标定值 1.000012kΩ CALibration: RESistance 1.000012kR 写入标定值 10.000012kΩ CALibration: RESistance 10.000012kR

5.7.4 查询误差标定测点电阻

命令格式: CALibration:RESistance? 返回格式: CALibration:RESistance <range>

例如:

查询当前测点标定值 返回当前标定值 100.0102Ω CALibration:RESistance? CALibration:RESistance 100.0102R

5.8 变差子系统

5.8.1 指定变差测点

命令格式: VARiation:POINt {1~7|MINimum|MAXimum}
命令正确解析后,仪器立即执行但不返回消息。
例如:
输出到变差测点 2
VARiation:POINt 2
输出到最小变差测点 1
VARiation:POINt MINimum
输出到最大变差测点 7
VARiation:POINt MAXimum

5.8.2 查询当前变差测点

命令格式: VARi	VARiation:POINt?[MINimum MAXimum]		
返回格式: VARi	ation:POINt {1-	~7 MINimum 1 MAXimum 7}	
例如:			
查询当前变差测	点	VARiation:POINt?	
返回当前变差测	点 2	VARiation:POINt 2	
查询最小变差测	点	VARiation:POINt?MINimum	
返回最小变差测	点 1	VARiation:POINt:MINimum 1	
查询最大变差测	点	VARiation:POINt?MAXimum	
返回最大变差测	点 7	VARiation:POINt:MAXmum 7	

5.8.3 变差测点往复运动

命令格式: VARiation:MOVement {1|ON|0|OFF} 命令正确解析后,仪器立即执行但不返回消息。

例如:

VARiation:MOVement ON	仪器在当前测点往复运动
VARiation:MOVement 1	仪器在当前测点往复运动
VARiation:MOVement OFF	停止当前测点的往复运动
VARiation:MOVement 0	停止当前测点的往复运动

5.9 仪器信息查询

命令格式:*IDN?

返回格式:品牌+型号+硬件版本+固件版本+内核版本+UI版本+生产日期+设备编

号

例如:

查询仪器信息	*IDN?
仪器返回信息	SNYUAN, SY54A, H0.10, S0.13, B0.10,
	U0.04, MFD20240213, PSN001-2345

5.10 重置仪器

命令格式:*RST

正确解析后,仪器将重置所有数据并重新启动。

5.11 返回错误信息

5.11.1 命令错误

例加.

返回格式: Invalid Cammand

当命令中出现命令缺失、拼写错误、符号错误等情况时,将返回命令错误"Invalid Cammand"。

1.1.1.1	
发送命令	OUTPut:Status
返回信息	Invalid Cammand

发送命令	OUTPut:Satus MAXimum

返回信息	Invalid Cammand
发送命令	OUTPut: Status MAXimum
返回信息	Invalid Cammand

5.11.2 状态错误

返回格式: Invalid Status

发送命令正确,但仪器没有处于相应的工作状态,将返回状态错误"Invalid Status"。

例如:	
在"电阻模式"下发送	OUTPut:TEMPerature 10
返回信息	Invalid Status
在"位置校正"中发送	INHerent:POINt -5
返回信息	Invalid Status
在非"误差标定"状态下发送	CONFigure:CALibration OFF
返回信息	Invalid Status

5.11.3 参数错误

返回格式: Invalid Number

命令中所带的参数拼写错误、超出允许范围等情况时,将返回数值错误"Invalid Number"。

例如:	
发送命令	OUTPut:Status MAXi
返回信息	Invalid Number
发送命令	INHerent:POINt 10
返回信息	Invalid Number
发送命令	POSition:POINt 1
返回信息	Invalid Number

6 技术指标

6.1 外形尺寸

图 6-1 正面 (提手抬起)

图 6-2 俯视(提手平放)

6.2 技术参数

	电阻输出范围 最小输出电阻值 最小步进值 变差		电阻输出范围	0.01 Ω~100000.00 Ω	
			小输出电阻值	0.01 Ω	
			最小步进值	0.01 Ω	
			变差	≪0.5 mΩ	
			参考功率	0.05 W	
			最大功率 [1]	0.2 W	
		最	大加载电压 [1]	250 V	
da 170		最	大通过电流 [1]	3 A	
电阻	温度系数		温度系数	25 PPM (10 Ω ~ 100000 $\Omega)$	
111 田			切换时间 [2]	≪0.8 s	
	44		×0.01 Ω	±5 %	
	输		×0.1 Ω	±1 %	
	出		×1 Ω	±0.2 %	
	作		×10 Ω	±0.05 %	
	佣		×100 Ω	±0.01 %	
	戊 [2]		×1000 Ω	±0.01 %	
	ျပ	×10000 Ω		±0.01 %	
	最小温度步进值 模拟温度传感器规格		小温度步进值	0.1 °C	
			温度传感器规格	17 种	
		1	PT 100 [385]	-200∼+850 °C ±0.1°C	
	温	2	PT 500 [385]	-200∼+850 °C ±0.05°C	
	度	3	PT 800 [385]	-200∼+850 °C ±0.05°C	
	传	4	PT 1000 [385]	-200∼+850 °C ±0.05°C	
	感	5	Cu 100	-50∼+150 °C ±0.1°C	
	器	6	NTC 1K B=3470	-30∼+179 °C ±0.1°C	
構刊	模	7	NTC 1.5K B=3470	-30∼+179 ℃ ±0.1℃	
(笑1)J 迎 庄	拟	8	NTC 2K B=3470	-30∼+179 ℃ ±0.1℃	
/皿/文	温	9	NTC 3K B=3470	-30∼+179 ℃ ±0.1℃	
	度	10	NTC 4.7K B=3470	-30∼+179 °C ±0.1°C	
	范	范 11 NTC 5K B=3470	NTC 5K B=3470	-30∼+179 °C ±0.1°C	
	韦	12	NTC 5K B=3950	-20∼+300 °C ±0.1°C	
	及	13	NTC 10K B=3380	-26∼+179 ℃ ±0.1℃	
	准	14	NTC 10K B=3470	-25∼+179 ℃ ±0.1℃	
	确	15	NTC 10K B=3950	-20∼+300 °C ±0.1°C	
	^皮 16 NTC 20K B=3950	NTC 20K B=3950	-8∼+300 ℃ ±0.1℃		
		17	NTC 30K B=3950	-0∼+300 ℃ ±0.1℃	
数值	电阻值记忆			20 组	

记忆	温度值记忆		20 组
		接口物理型式	RS232
	R5232 按口	通讯协议	SPCI 子集
		接口物理型式	USB-B
	030 按口	通讯协议	SPCI 子集
扩展	从刘润若按口	接口物理型式	BNC
接口	21. 印 6月 19 日	信号格式	脉冲, ±5V, 3个状态
	从刘坊制接口	接口物理型式	BNC
	211-即111-1113-11	信号格式	电平, ±5V, 3个状态
	同生接口	接口物理型式	BNC
	的少按口	信号格式	RS232
	供电	电电源	AC 200~240 V
供电	电源频率		45∼65 Hz
电源	静态功率消耗		≪20 VA
	最大功率消耗		≪40 VA
	外形尺寸 最大外形尺寸		364×155.5×420 mm
外形			$122.9 \times 189 \times 120 \text{ mm}$
特征	(提手折叠后,包括所有凸出物)		422.5 ¹¹ 105 ¹¹ 420 mm
	重量		4.3 kg
	储遍	 我温度	0∼50 °C
	储藏湿度		20~85 %RH
话应	参考温度		20 ±1 ℃
石垣	最佳工作温度		20 ±5 ℃
21.220	允许工作温度		10∼30 °C
	参考湿度		50±10 %RH
	工作湿度		$25{\sim}80~\%{ m RH}$

注:

[1] 输出电阻上加载的电压和电流的乘积不得超过"最大功率"。当不超过最大功率的前提下,输出电阻上加载的电压不得超过"最大加载电压",输出电阻上通过的电流不得超过"最大通过电流";

[2] 切换时间是指输出电阻从某个值向另一个值转换的过渡时间。在过渡过程中,输出 电阻值可能会产生抖动;

[3] 仪器的电阻输出准确度均以仪器输出端子处测量为准,随机所配测试线的导线电阻 不包含在内。

7 成套及保修

7.1 成套

仪器出厂时包含以下内容:

序号	名称	数量
1	SY54A 精密程控直流电阻箱	1 台
2	三线电源线	1 根
3	HS2050 测试线	2条(红、黑各1条)
4	HS3235 鳄鱼夹	2只(红、黑各1只)
5	操作手册	1 本
6	T500mA Φ5×20mm 玻璃保险管	2 只
7	产品合格证	1 张
8	测试报告	1 份
9	保修卡	1 张

用户收到仪器后,开箱检查应核对以上内容,如发生遗缺,请立即与本公司或经销商 联系。

6.2 包装

本仪器一般应用塑料袋包封,连同附件、备件、测试报告、使用说明书、产品合格证和保修卡等装在防尘、防震和防潮的坚固包装箱内。

6.3 运输

本仪器在运输过程中应小心轻放、防潮、防淋。

6.4 储存

本仪器储存环境为温度 0~50℃,相对湿度不大于 85%RH 的通风室内,室内空 气中不应含有腐蚀性的有害杂质。

6.5 保修

用户从本公司购买的,公司发运日期起计算。从经销商购买的,自经销商发运日 期起计算,保修期为一年。

保修期内免费维修。保修时应出具该仪器的保修卡。

超过保修期的,仪器由本公司终身维修,但客户需支付配件费用、维修费和运费。

本仪器属精密仪器,仪器维修后,需重新校准,才能保证输出精度。因此,本仪器仅由本公司专业人员进行维修。

以下情况不属于保修范围:

- Ⅰ 超出保修期的;
- Ⅰ 人为损坏的、擅自更改保修时间的;
- Ⅰ 自行拆卸的;
- Ⅰ 使用不当,没按使用说明书的要求使用,造成损坏的;
- 受到不可抗拒的外力、自然灾害等因素造成损坏的,如:地震、水灾、火灾等;

出现以上情况,按超出保修期的规定执行。